配合使用蒸发冷却法 本省之高温期长达八个月以上,就算温室内温度可降至与外温相同,其温度仍然偏高。加湿(蒸发)冷却方式为进一级的降温方式,常见者有风机湿帘 ( 水墙) 法(Fan and Pad)、风机水雾法(Fanand Mist) 及风机微雾法(Fan and Fog)。前二者之降温极限为外界空气之湿球温度,末者之降温极限则为原来内部空气之湿球温度。 (一)、风机湿帘法与风机水雾法风机湿帘( 水墙) 法之设计优良者其效率在75 - 85 % (如图5-3 ),风量过大、风速过高,将降低空气与湿帘之接触时间,效率反而下降。水墙之安置可有多种方法(图5-4 ),一般以直立式最为常见。 图 5-3 典型的风机湿帘(水墙)法, 湿帘部份设计图 依据所喷出之水珠大小,风机水雾法又分为水雾(mist)与细雾(micromist);其颗粒大小分别为1 mm 与0.1 mm。由於水雾之颗粒较大,喷出之后很快就落至植株体上或着地,是以蒸发效果不好,后者大约只有50%的水份能有效蒸发带走蒸发潜热,前者能带走的热更少。更有甚者,前者可能造成过湿而导致植株的F·B,使用上不可不慎。 风机湿帘法与风机水雾法之水墙与水雾产生设备通常只安装在温室之一侧(图 5-5 ),是以无可避免的温室内会有温度梯度的现象。风机微雾法通常有多重『水线』,譬若在吸气口侧广设预冷水线,在室内气流之中途设再冷水线(如图 5-6 ),一般降温效果较佳且均匀。设计良好之风机微雾型降温设备可将温室温度降至同於外界大气之湿球温度。喷雾系统的降温能力除了与喷嘴的效率相关之外,其喷水量是否适量亦是一重要关键,图 5-7 所示分别为水量不足与水量充足之同一喷雾设施之降温能力比较。 台湾为***带地区海岛,一般皆会直觉的认为一定是高温高湿,非常不利於采用加湿(蒸发)冷却方式进行降温,然而在正午及午后的高温时段,空气之相对湿度通常只有约50 % (如图5-8 ),整天的湿球温度均保持在25 ℃左右。是以在最需降温之同时,风机湿帘(水墙)、风机水雾及风机微雾等三种蒸发冷却式降温方法仍有其可发挥之处。本省目前以风机湿帘法最为大众熟悉,此系统在使用时需注意维持温室之气密性,必需使进入温室之空气全都经过水墙才能发挥蒸发冷却效果。
图 5-4 水墙之各种安置方法图 5-5 水墙与水雾產生设备安装在温室之一侧 图 5-6 风机微雾法典型之多重『水线』安装方式 图 5-7 风机微雾法水量不足(上)与水量充足时(下图)降温能力之比较 图 5-8 本省典型之夏季气候(最热时,湿度最低)
图 5-9 小型吹入式蒸发冷却单元机 小型温室可採用小型吹入式蒸发冷却单元机如图5-9所示(Nelson,1985 ),其构造与基本原理与今日市面上有售之凉风扇相同,基本上是将水墙与风扇安装於同一单元,空气经过水墙被风机吹入温室。目前本省已有相类似的產品问世。 (二)、结合水墙法与水雾法的喷水夹板墙设计 Luchow 与Zabeltitz (1992 )的实验探讨喷出之水珠与空气流向对降温效果之影响。
图 5-10 结合风机水墙法与风机水雾法的喷水夹板墙示意图 如图5-10之喷水夹板墙法,此系统之特色在空气与水雾之接触时间颇长,喷嘴分别安装於两夹层,空气流经两夹层,在一边喷出之水珠与空气流向为同向(Con-currentFlow ),另一边则为反向(Counter-current Flow)。空气通过此喷水侧之降温效率(β)可采水墙效率之计算公式。 Ti - Taβ = ─────Ti - Tw其中,Ti,Ta如图5-10 所示,分别为进入与离开喷水侧之空气温度,Tw则为外界空气之湿球温度。Luchow 与Zabeltitz 探讨以下三种情况之降温效率,简列如下: 使用单列水管,空气流向与喷嘴喷水之方向相同,使用单列水管,空气流向与喷嘴喷水之方向相反,使用双列水管,空气流向与喷嘴喷水之方向先相同再相反。 第二者优於第一者的原因在於第二者中空气与水珠之接触时间较长,当第一者之水压为0.5 MPa (约5 个大气压)而第二者之水压为0.2 MPa (2 个大气压)时,二者之降温效果相差不多,但很明显的,由於第一者使用之水压较高,其初始与操作成本皆要比第二者高出许多。第三者使用之水量为前二者之两倍,其降温效果为最佳是可预见的。 作者考虑用水量,降温效果与安装成本得到的结论为第二者最佳。此系统的最大好处在成本低廉,安装、维修容易且效率比水墙高。此处所谓之效率系指喷水侧之降温效率。效率为100% 代表离开喷水侧进入温室之空气温度为同於大气之湿球温度。 本省在高湿高热之夏季当可采用此系统,若经费不缺,可采用前述之第三种设计,其效果会比水墙好,成本也较低廉。 (三)、风机微雾法风机微雾法简称喷雾法( fogging ), 此类系统的使用早已存在,却是直到最近才广泛被应用在温室中。喷雾系统所喷出之雾气(fog )是由水蒸气和极细小的水滴所组成的。传统的雾气产生方式是水经由高压过程通过极小的洞(喷嘴)所产生的「云( cloud )」。就理想状况而言,「云」应该能悬浮在空中,且维持一段时间,是以能完全蒸发。另外,雾气的产生亦可透过超音波振荡方式或旋转离心方式产生。 喷雾方式所产生雾气之颗粒大小是由喷嘴的管径和水压的大小来决定的。 我们这里所指的雾气( fog )和薄雾( mist )并不相同。薄雾的水滴比雾气的大且较重,而且会造成潮湿。雾气起初是呈现悬浮的状态,最后会蒸发掉,若空气含水程度已达饱和,则其会再变成水滴。图 5-11 所示为温湿度与颗粒大小对水珠蒸发前所能移动之距离的影响。 传统的风机水雾法与风机微雾法都使用喷嘴,其对水质与水压之要求均高, 前者之水压需求在 10~14 大气压之间, 后者则维持在35 大气压或以上; 基於高压之需求,管路之材质与喷嘴之要求均较高,相对的成本亦较高。
图 5-11 温湿度与颗粒大小对水珠蒸发前所移动之距离的影响 旋转离心式喷雾机配合风机之使用为新式之风机微雾法。此方法对水质与水压的要求不高为其最大优点。 其产生之雾粒大小约为 43微米, 若喷雾机可悬吊在作物上方 1 公尺或以上,则所喷出之水雾在落在作物叶面上之前均可完全蒸发,效率达 100% (图 5-12 )。 风机微雾法所产生之水珠颗粒为 0.01 ~ 0.03 mm,是以通常能近乎 100% 的有效蒸发。 英文的 mist 与 fog 皆译为雾,实则二者在水珠的颗粒大小上有很大的区别。fog 的定义为颗粒小於 40 微米( micron,μ m )的水珠,一个 micron 为百万分之一米,约为人发直径的 1/10。 0.01 ~ 0.03 mm 为 10 ~ 30 微米约为 1- 3 根头发之直径。 颗粒比 1 微米还小的水珠即为『烟』。就温室降温之目的而言,最佳的雾粒直径为 17 微米,此种雾粒所造成的微雾浓度适中,尚具有遮光的效果,呈烟状的雾粒即缺乏此种附加价值。再者,浓度适中的微雾在蒸发前弥漫於作物附近,可形成一零蒸散环境 (Zero transpiration environment), 在不影响作物生理的情况下大幅降低作物对灌溉的需求,此为另一附加价值。
图 5-12 迴转式离心喷雾机使用情形 1、喷雾对温室环境之影响喷雾对温室环境之影响包括湿度、温度、光照和疾病产生的情况等方面。喷雾系统对温室环境的影响和外在环境有密切的关系。当外在环境是处在低湿、高温、高辐射时,喷雾系统的降温效果是最显着的;在此种状态下,温度可最多降低9℃左右。 在热且乾的情况下,使用喷雾系统可进行湿度和温度的控制,因为雾气在蒸发的过程中,须从空气中吸取热量,因此会在农作物的上方产生一层较清凉也较重的空气。冷空气下降、热空气上升,於是造成空气的对流。所以,除了可降温之外,亦兼有通风的效果。当外在环境是既湿且冷,则喷雾系统对温室环境的影响将大大的减少。其它诸如灌溉频率、用水量、加热等环境管理策略,总之会影响温室内湿度者对喷雾系统之效率都有影响。 2、喷雾对作物的影响喷雾系统对温室作物之影响包括了作物之含水程度、生产力(产量)、品质和摆在展示柜之存活时间等。就植物生理,就其和周围环境的作用而言,是植物本身的蒸散作用和水紧迫现象的减少。这些现象是处於既热且乾的环境下,喷雾系统所能造成的最重要现象。作物可避免极度的水紧迫现象而长期维持在一适当的保水状态。 喷雾系统的使用所带来的实际成效,是使农作物的生产力和品质的提高。在玫瑰花切花的例子中,在装设有喷雾系统相对湿度维持在80 ﹪的温室较没有喷雾系统的温室, 其平均生产力可高出约 5 至50 ﹪(视季节与品种而异), 级数(如茎的长度)亦增加了 33 ﹪。同时,似乎亦可延长放在展示柜上的存活寿命。 3、喷雾系统的成败关键喷雾系统的成败关键在於水的品质,承受高压经喷嘴喷出的水中若溶有许多可溶解的固体、无机盐等物质,则便可能造成许多问题。溶质的累积,轻者破坏雾气喷出的造型,且通常会使雾气的雾滴变大,结果导致叶片的潮湿(叶面长期潮湿并不是我们所期望的);溶质累积严重者,更可能造成喷嘴的阻塞而使系统完全失去作用。品质不良的水所产生的另一负面影响是,如钙等可溶解的物质会落在作物上。这在切花作物是最不好的,因为这会使美丽的花朵失去其原本的美丽色彩。 使用系统规划完善、设计良好的喷雾系统,其结果是可以令人满意的,由於可对植物的蒸散作用和植物本身的保水状态作适当的控制,其不仅可提高作物的生产力和品质,在环境控制上亦可达到降温的需求,且避免过湿。喷雾系统的主要缺憾,是对水质的要求及经常性的要对喷嘴作维护工作。此二问题一旦透过定期保养来解决,则使用喷雾系统所带来的好处将大於其缺点。若使用回转离心式喷雾机则无此困扰。
|